Preliminary Leg Cart Assembly A Success!

Hello again!

Yesterday, I presented on the basics of hydraulic system assembly. While technically only the mechanical team would have to worry about such things, we present basic lessons to the group so everyone is on the same page. After that, the group split up, with the mechanical team going out to assemble the parts we had and the controls and electrical group discussing next steps to controlling the Leg Cart.

The mechanical team took all the parts that we had been slaving over for the past month and put them together in our first fit-up. Even though not all of the parts were done, or all of the features machined or welded in, this let us develop a list of to-dos to keep track of and fix before the final assembly this weekend. It also let us get a sense of how big the cart and leg really were… we’re both horrified and really excited to see the cart paddling itself around Artisan’s Asylum in the near future. Without further ado, I encourage you to check out the pictures of the fit-up below!

 

Just a reminder, the test leg is a roughly half-scale prototype we’re using to characterize the building blocks of our system. The leg isn’t anywhere close to the final design, it’s just a quick test system we could produce relatively quickly. The cart will hold a hydraulic power system in its base, consisting of a loaner 100-horsepower electric motor, our hydraulic pump, the fluid reservoir and all of other hydraulic system components. As if the system weren’t dangerous enough, we’re running the electric motor off of Adam Bercu’s electric motor cycle battery. Woohoo!

Also, in other news, we had our first team photo after the fit-up! Check it out here:

 

The Project Hexapod Team

 

Stay tuned for updates after this weekend, when we finish the mechanical assembly of the cart, start the hydraulic system assembly, and with any luck, hand the cart over to the electrical and control teams.

-Gui

Published by

Gui

Gui Cavalcanti received a General Engineering degree with a Robotics concentration from the Olin College of Engineering. He worked as a robotics engineer and systems integrator at Boston Dynamics, working on cutting edge mechanical design and systems integration for highly dynamic legged robots like BigDog, AlphaDog, and PETMAN. He was the Systems Integrator for the LS3 project, coordinating the joint engineering and development of multiple subcontractors and engineers. Over the course of his career he has also developed the mechanical systems for a robotic tuna, several robotic snakes, an ornithopter, and several other robotic animals. In his spare time he builds ridiculous things with ridiculous people, like a flotilla of SUV-sized rubber duck boats to take on the water on the 4th of July.

Leave a Reply

Your email address will not be published.