

Introduction to Hydraulics

Gui Cavalcanti 4/17/2012

Definition

- Transmission of mechanical power via incompressible liquids
 - Hydraulic Power = Flow X Pressure
 - Pressure X Area = Force
 - Flow / Area = Velocity
- · "Liquid gearing"

Typical Hydraulic System

- One centralized powerplant
- Constant pressure (1,500 to 5,000 psi)
- Variable (demand-based) flow rate
- Flow-control or on/off valves controlling individual actuators

Electric Motor Analogy

- Imagine a DC electric motor system with the following attributes:
 - Constant amperage
 - Variable voltage
 - Voltage-limited linear amplifiers
 - Motors that never burned out
- How would this system behave?

Typical Hydraulic System

System Attributes

- "Force is free"
- All movement is expensive
 - Movement requires power (Flow X Pressure), regardless of physical load
- Any actuator (subject to flow limitations) can produce up to full system power
- Closed valves produce rigid actuators
- Abrupt changes in valves produce abrupt mechanical movements

Example Hydraulic Systems

- CAT 320D L Medium-Class Excavator
- 52,000 lb operational weight
- 6,000 lb arm
- 46,000 lb drawbar pull
- 35 foot horizontal reach
- 25 foot digging depth
- 20,000+ lbf digging force

How much power can the CAT 320D L Excavator's engine generate?

148 horsepower

Kia Spectra 2002

• How much power can my crappy Kia Spectra's engine generate?

Kia Spectra 2002

126 horsepower

Wait. What?

Why?

- Hydraulics offer "perfect" liquid gearing between the powerplant and actuators
- Each joint's performance is exactly bounded by cylinder size, cylinder placement, valve size, and system pressure
- Raw power at low speeds = high forces

Hydraulics

Hydraulics

- Hydraulics look "small"
 - Fluid is incompressible; no big chambers are required for compression
 - Limitations on size: material properties, bearing ratings, money you're willing to spend
- Trade size for heat generation

- Hydraulic systems can harm you in multiple ways. They can easily:
 - Burn you
 - Cut off limbs
 - Cause gangrene
 - Cause blunt trauma

- Maintain a significant distance between you and any working hydraulic equipment
 - Never service equipment while it's running
- Report any leaks immediately
- Never leave a fitting partially tightened;
 either it's on or it's off all the way
- Beware leaks in hoses
- Assume parts can fly off at any time

Requisite Terrifying Image

Hydraulic System Design

Typical Hydraulic System

Hydraulic System Design

- A couple of standard components:
 - Pump system
 - Reservoir
 - Accumulator
 - Oil Cooler
 - Filters
 - Valves
 - Actuators

Pump System

- Purpose:
 - Provide fixed pressure (generally, 1,500 to 5,000 psi) constantly, and flow on demand
- Solutions (in order of price, low to high):
 - 1. Create fluid flow constantly, but "dump" unused high pressure fluid (Industrial equipment)
 - 2. Create fluid flow as needed using human-controlled pumps (Lawn mowers, hydraulic tools)
 - 3. Create fluid flow as needed using mechanicallyintelligent pumps (Airplanes, Boston Dynamics)

Gear Pumps/Relief Valves

- Fixed displacement pump
 - Move X volume per revolution via interface between gear teeth and chamber wall
 - Engine spinning at a given RPM produces a given flow rate
- Relief valve opens at Y psi
 - System builds up pressure to Y psi
 - Any flow past the system demand flows through the bleed valve and into reservoir

Reservoir

Purpose:

- Hold excess fluid
- Prevent turbulence
- Cool fluid

Two main types of circuits:

- Closed Circuit: No access to air. Reservoir is springloaded to a fixed low pressure.
- Open Circuit: Ready access to air. Reservoir is at atmospheric pressure.

Accumulator

Purpose:

 Even out flow spikes on high pressure side due to actuator demands

• Solutions:

- Embed a high-pressure gas bladder in a liquid tank
- Spring-load a plunger

- Endcap
- Non-Return Valve
- 3 .Label
- Shell
- Bladder
- 6 Anti-Extrusion Ring
- 7 Bleed Valve
- 8 O-Ring Seal
- Single Inlet-Outlet
- 10 Poppet Valve

Oil Cooler

• Purpose:

 Hydraulic systems are generally <50% efficient; everything else becomes heat

Filters

- Purpose:
 - Keep particulates out of reservoir and pump
- Particles as small as 10 microns can irretrievably damage a pump

Valves

Purpose:

Control fluid flow to actuators

Solutions:

- Solenoid valves (1 Hz; on/off)
- Proportional valves (10 Hz; tuned spring, currentcontrolled coils)
- Servo valves (100 Hz; small motors, tiny nozzles)

Actuators

Purpose:

 Convert pressure and flow into force and velocity

· Solutions:

- Cylinders
- Rotary motors

Questions?